Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.

نویسندگان

  • Eric R Cohen
  • Egill Rostrup
  • Karam Sidaros
  • Torben E Lund
  • Olaf B Paulson
  • Kamil Ugurbil
  • Seong-Gi Kim
چکیده

The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal response to neural stimulation is influenced by many factors that are unrelated to the stimulus. These factors are physiological, such as the resting venous cerebral blood volume (CBV(v)) and vessel size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response by a global hypercapnia-induced BOLD signal. To demonstrate the effectiveness of the BOLD normalization approach, gradient-echo BOLD fMRI at 1.5, 4, and 7 T and spin-echo BOLD fMRI at 4 T were performed in human subjects. For neural stimulation, subjects performed sequential finger movements at 2 Hz, while for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest that the hypercapnic normalization approach can improve the spatial specificity and interpretation of BOLD signals, allowing comparison of BOLD signals across subjects, field strengths, and pulse sequences. A theoretical framework for this method is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-subject variability in hypercapnic normalization of the BOLD fMRI response

In the application of hypercapnic normalization to functional magnetic resonance imaging (fMRI) studies, the blood oxygenation level dependent (BOLD) response to a functional stimulus is typically divided by the BOLD response to a hypercapnic challenge. While some prior studies have shown that hypercapnic normalization can reduce inter-subject BOLD variability, other studies have found an incre...

متن کامل

Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced...

متن کامل

Evaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies

Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...

متن کامل

Variability in Hypercapnic Normalization of the BOLD fMRI

This PDF receipt will only be used as the basis for generating PubMed Central (PMC) documents. PMC documents will be made available for review after conversion (approx. 2-3 weeks time). Any corrections that need to be made will be done at that time. No materials will be released to PMC without the approval of an author. Only the PMC documents will appear on PubMed Central -this PDF Receipt will...

متن کامل

fMRI-acoustic noise alters brain activation during working memory tasks.

Scanner noise during functional magnetic resonance imaging (fMRI) may interfere with brain function and change blood oxygenation level dependent (BOLD) signals, a problem that generally worsens at the higher field strengths. Therefore, we studied the effect of increased acoustic noise on fMRI during verbal working memory (WM) processing. The sound pressure level of scanner noise was increased b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2004